4.8 Article

Fabrication of Patchy Silica Microspheres with Tailor-Made Patch Functionality using Photo-Iniferter Reversible-Addition-Fragmentation Chain-Transfer (PI-RAFT) Polymerization

期刊

SMALL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202301761

关键词

grafting-from; microcontact printing; patchy particles; photo-iniferter reversible addition-fragmentation chain-transfer (RAFT) polymerization

向作者/读者索取更多资源

The study demonstrates a feasible method to fabricate patchy silicon dioxide microspheres, which can be equipped with tailor-made polymeric materials as patches. The method relies on a solid-state supported microcontact printing (μCP) routine optimized for the transfer of functional groups to capillary-active substrates, introducing amino functionalities as patches to a monolayer of particles. Acting as anchor groups for polymerization, photo-iniferter reversible addition-fragmentation chain-transfer (RAFT) is used to graft polymer from the patch areas. The protocol promises a vast degree of freedom in engineering the surface properties of highly functional patchy particles, making it a platform technology for the fabrication of particles with locally precisely formed patches.
Their inherent directional information renders patchy particles interesting building blocks for advanced applications in materials science. In this study, a feasible method to fabricate patchy silicon dioxide microspheres is demonstrated, which they are able to equip with tailor-made polymeric materials as patches. Their fabrication method relies on a solid-state supported microcontact printing (& mu;CP) routine optimized for the transfer of functional groups to capillary-active substrates, which is used to introduce amino functionalities as patches to a monolayer of particles. Acting as anchor groups for polymerization, photo-iniferter reversible addition-fragmentation chain-transfer (RAFT) is used to graft polymer from the patch areas. Accordingly, particles with poly(N-acryloyl morpholine), poly(N-isopropyl acrylamide), and poly(n-butyl acrylate) are prepared as representative acrylic acid-derived functional patch materials. To facilitate their handling in water, a passivation strategy of the particles for aqueous systems is introduced. The protocol introduced here, therefore, promises a vast degree of freedom in engineering the surface properties of highly functional patchy particles. This feature is unmatched by other techniques to fabricate anisotropic colloids. The method, thus, can be considered a platform technology, culminating in the fabrication of particles that possess locally precisely formed patches on particles at a low & mu;m scale with a high material functionality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据