4.7 Article

Dual nature brilliant adsorbent engineering by converting an Al-based MOF to defect rich quasi-MOF

期刊

出版社

ELSEVIER
DOI: 10.1016/j.seppur.2023.125611

关键词

Defective MOF; Metal-organic framework; Phosphate removal; Water treatment

向作者/读者索取更多资源

Introducing defects into porous metal-organic frameworks is important for improving their adsorption performance. Quasi-MOFs, an underutilized variant of large-scale, fundamentally deficient MOFs, have been found to have substantial amounts of unsaturated metal sites to offset the drawbacks of MOFs. In this study, a quasi-MOF was produced using a water-stable MOF and demonstrated significantly improved phosphate adsorption capability due to the presence of defect sites.
Introducing defects into porous metal-organic frameworks is very important for improving adsorption performance. Due to their simplicity of synthesis and improved efficiency in MOFs applications, Quasi-MOFs have recently been considered as underutilized variant of large-scale, fundamentally deficient MOFs with substantial amounts of unsaturated metal sites to offset the drawbacks of MOFs. Herein, a quasi-MOF was produced using a water-stable MOF (MOF-303) which is based on one of the best phosphate-interacting metals (Al-3(+)), that underwent controlled thermolysis in an air atmosphere at various temperatures between 430 and 470 degrees C. The acquired Quasi-MOF-303 underwent thorough characterization. The highest adsorption value of 488 mg center dot g(-1) for phosphate was achieved at 298 K at an intact pH value of medium(which is roughly 25 times more than the intact structure). The experimental results demonstrated an exothermic spontaneous mechanism for the phosphate adsorption process that fit the pseudo-second-order and Langmuir isotherm models. The findings show that defect sites are crucial for improving phosphate uptake capability. This is further supported by several advanced characterizations, which resulted in the highest reported phosphate adsorption rate among all known adsorbent MOFs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据