4.7 Article

Signal amplification strategy by chitosan-catechol hydrogel modified paper electrode for electrochemical detection of trace arsenite

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 400, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2023.134836

关键词

Chitosan hydrogel; Electrochemical detection; Arsenite; Paper electrode; Water contamination

向作者/读者索取更多资源

Arsenic contamination in water bodies is a significant health risk. This study developed a chitosan-catechol modified electrode for rapid and accurate detection of trace amounts of arsenic. The modified electrode demonstrated good detection capability and resistance to ionic interference, making it suitable for in situ detection.
Arsenic contamination is widespread in water bodies and poses a significant risk to human health, thus developing a rapid and inexpensive in situ method for the detection of arsenic is urgently needed. In this study, a chitosan-catechol carbon paper electrode was fabricated by electrodeposition of chitosan on a conductive carbon paper and subsequential electro-oxidative grafting of catechol. This chitosan-catechol modified electrode demonstrated good performance in detecting trace amounts of arsenic, which is mainly due to the significantly amplification of oxidation signals generated by ferrocene (Fc) on chitosan-catechol hydrogel. The interaction of As(III) with quinone and semiquinone radicals results in the decrease of electronic transmission nodes. The modified electrode exhibited a good detection capability of low concentration As(III) with a detection limit 0.82 ppb by differential pulse voltammetry (DPV). In addition, the chitosan-catechol modified sensor has the merits of high reproducibility, durability and strong resistance to ionic interference. Further successful detection of As(III) in actual rice and soil samples suggests its good potential in the field of in situ detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据