4.6 Article

Microborings reveal alternating agitation, resting and sleeping stages of modern marine ooids

期刊

SEDIMENTOLOGY
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1111/sed.13149

关键词

Bioerosion; carbonate fabrics; Holocene; ichnotaxa; light penetration; ooids

类别

向作者/读者索取更多资源

This study presents an in-depth examination of microbial bioerosion features of Holocene ooids from two locations, the Schooner Cays ooid shoals and the Shalil al Ud ooid shoals. The study finds no significant differences in ooid characteristics between the two locations and identifies the presence of various microendolithic borings. The study also proposes a four-stage model for ooid formation and highlights the importance of understanding the role of bioerosion in ooid degradation.
Ooids are abundant carbonate grains throughout much of Earth's history, but their formation is not well understood. Here, an in-depth study of microbial bioerosion features of Holocene ooids from the Schooner Cays ooid shoals (Great Bahama Bank, Eleuthera, Bahamas) and the Shalil al Ud ooid shoals in the Arabian/Persian Gulf (Abu Dhabi, United Arab Emirates) is presented. No obvious differences were found in ooid size distribution, cortex layer thickness, the composition of nuclei or euendolithic community when comparing ooids from both locations. Microendolithic borings are present in most studied ooid surfaces, but the intensity of (micro-)bioerosion varies significantly. Applying an epoxy vacuum cast-embedding technique allowed the identification of ichnotaxa and their inferred producers (various genera of diatoms, cyanobacteria, coccolithophores and unspecified bacteria). Euendolithic taxa have specific low-light tolerances and light optima. This implies that information about the relative bathymetry (seafloor versus burial within an ooid shoal) and ecology for ooid cortex formation can be obtained via the presence or absence of their respective ichnotaxa. The history of a statistically significant number of ooid cortices can be translated into dune dynamics and the temporal variations thereof by allocating the inferred index producer to a defined burial or light penetration zone. In this context, ooid formation can be divided into four stages: (i) an agitation stage in the water column, characterized by the colonization of grains by photoautotrophs; (ii) a resting stage, characterized by temporary burial of the ooid, leading to immobilization and a shift towards heterotrophs; (iii) a sleeping stage, characterized by prolonged burial and colonization by organotrophs; and (iv) a reactivation stage, characterized by a resurfacing of the ooid and a subsequent shift towards photoautotrophs. The sleeping stage is presumably a stage of ooid degradation where bioerosion, mainly by heterotrophic fungi and bacteria is particularly active.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据