4.7 Article

Studying stellar spin-down with Zeeman-Doppler magnetograms

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stw3094

关键词

techniques: polarimetric; stars: activity; stars: evolution; stars: magnetic field stars: rotation

资金

  1. Science and Technology Facilities Council (STFC)
  2. Deutsche Forchungsgemeinschaft (DFG)
  3. [ANR 2011 Blanc SIMI5-6 020 01]
  4. Science and Technology Facilities Council [1443619] Funding Source: researchfish

向作者/读者索取更多资源

Magnetic activity and rotation are known to be intimately linked for low-mass stars. Understanding rotation evolution over the stellar lifetime is therefore an important goal within stellar astrophysics. In recent years, there has been increased focus on how the complexity of the stellar magnetic field affects the rate of angular-momentum loss from a star. This is a topic that Zeeman-Doppler imaging (ZDI), a technique that is capable of reconstructing the large-scale magnetic field topology of a star, can uniquely address. Using a potential field source surface model, we estimate the open flux, mass-loss rate and angular-momentum-loss rates for a sample of 66 stars that have been mapped with ZDI. We show that the open flux of a star is predominantly determined by the dipolar component of its magnetic field for our choice of source surface radius. We also show that, on the main sequence, the open flux, mass-loss and angular-momentum-loss rates increase with decreasing Rossby number. The exception to this rule is stars less massive than 0.3M degrees. Previous work suggests that low-mass M dwarfs may possess either strong, ordered and dipolar fields or weak and complex fields. This range of field strengths results in a large spread of angular-momentum-loss rates for these stars and has important consequences for their spin-down behaviour. Additionally, our models do not predict a transition in the mass-loss rates at the so-called wind-dividing line noted from Lya studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据