4.7 Article

A new transformation-induced plasticity-assisted dual-phase medium-entropy alloy with ultra-high cryogenic mechanical properties

期刊

SCRIPTA MATERIALIA
卷 235, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.scriptamat.2023.115617

关键词

Maraging medium-entropy alloys; Precipitation strengthening; Metastability engineering; Transformation-induced plasticity; Liquid nitrogen temperature

向作者/读者索取更多资源

A novel maraging medium-entropy alloy was designed to achieve high tensile strength and uniform elongation at liquid nitrogen temperature by conducting a short-time martensite-to-austenite reversion treatment and adding needle-like (NiMn)(3-x)Ti-x and elliptical-shaped Ni2SiTi nano-precipitates. The alloy exhibited an ultra-high yield strength of 1.41 GPa and ultimate tensile strength of 1.88 GPa, with a uniform elongation of 14% in the reverted condition. These superior properties were attributed to the transformation-induced plasticity (TRIP)-assisted heterogeneous dual-phase microstructure strengthened by well-distributed nano-precipitates. The metastability-engineering approach can guide the design of TRIP-assisted maraging MEA to overcome the strength-ductility trade-off in extreme environments.
A novel maraging Fe68Ni10Mn10Co10Ti1.5Si0.5 (at%) medium-entropy alloy (MEA) was designed and microstructurally engineered to obtain a superior combination of tensile strength and uniform elongation at liquid nitrogen temperature. To this end, short-time martensite-to-austenite reversion treatment was conducted on an aged specimen to gain a dual-phase microstructure decorated by needle-like (NiMn)(3-x)Ti-x and the ellipticalshaped Ni2SiTi nano-precipitates. The alloy exhibited an ultra-high yield strength of 1.41 GPa and ultimate tensile strength of 1.88 GPa, with a uniform elongation of similar to 14% in the reverted condition. These superior properties are attributed to the transformation-induced plasticity (TRIP)-assisted heterogeneous dual-phase microstructure strengthened by well-distributed nano-precipitates. The metastability-engineering approach to achieve TRIP-assisted maraging MEA can usefully guide design to overcome the strength-ductility trade-off in extreme environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据