4.7 Article

Unraveling microbial community by next-generation sequencing in living membrane bioreactors for wastewater treatment

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 886, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163965

关键词

Encapsulated living membrane; Electro-encapsulated living membrane bioreactor; Microbial growth; Electrochemical process; Fouling mitigation

向作者/读者索取更多资源

This study investigates the complexity of microbial communities in self-forming dynamic membrane (SFDM) systems using Next-Generation Sequencing (NGS) data. The presence of an intermittently applied electric field in the encapsulated SFDM bioreactor promotes the growth of electroactive microorganisms, leading to highly efficient wastewater treatment and mitigation of membrane fouling.
This study delves into the microbial community complexity and its role in self-forming dynamic membrane (SFDM) systems, designed to remove nutrients and pollutants from wastewater, by means of the analysis of Next-Generation Sequencing (NGS) data. In these systems, microorganisms are naturally incorporated into the SFDM layer, which acts as a biological and physical filter. The microorganisms present in an innovative and highly efficient aerobic, electrochemically enhanced, encapsulated SFDM bioreactor were studied to elucidate the nature of the dominant microbial communities present in sludge and in encapsulated SFDM, patented as living membrane (R) (LM) of the experimental setup. The results were compared to those obtained from the microbial communities found in similar experimental reactors without an applied electric field. The data gathered from the NGS microbiome profiling showed that the microbial consortia found in the experimental systems are comprised of archaeal, bacterial, and fungal communities. However, the distribution of the microbial communities found in e-LMBR and LMBR had significant differences. The results showed that the presence of an intermittently applied electric field in e-LMBR promotes the growth of some types of microorganisms (mainly electroactive microorganisms) responsible for the highly efficient treatment of the wastewater and for the mitigation of the membrane fouling found for those bioreactors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据