4.7 Article

Characterization of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD)-induced cardiotoxicity in larval zebrafish (Danio rerio)

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 882, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163595

关键词

6PPD; Zebrafish larvae; Cardiotoxicity; Oxidative stress; Apoptosis

向作者/读者索取更多资源

This study evaluated the developmental cardiotoxicity of 6PPD in zebrafish larvae. The results showed that 6PPD exposure at a concentration of 100 μg/L induced significant oxidative stress, cell apoptosis, and cardiac malformation in the larvae. Transcriptome analysis revealed that 6PPD exposure affected the transcription of genes related to the calcium signal pathway and cardiac muscle contraction.
N-(1,3-dimethylbutyl)-N '-phenyl-p-phenylenediamine (6PPD) is a type of p-phenylenediamine (PPD), which is widely used in the manufacture of rubber tires owing to its excellent antiozonant properties. In this study, the developmental cardiotoxicity of 6PPD was evaluated in zebrafish larvae, and the LC50 was approximately 737 mu g/L for the larvae at 96 h post fertilization (hpf). In the 6PPD treatment of 100 mu g/L, the accumulation concentrations of 6PPD were up to 2658 ng/g in zebrafish larvae, and 6PPD induced significant oxidative stress and cell apoptosis in the early developmental stages of zebrafish. Transcriptome analysis showed that 6PPD exposure could potentially cause cardiotoxicity in larval zebrafish by affecting the transcription of the genes related to the calcium signal pathway and cardiac muscle contraction. The genes related to calcium signaling pathway (slc8a2b, cacna1ab, cacna1da, and pln) were verified by qRT-PCR, which were significantly downregulated in larval zebrafish after exposing to 100 mu g/L of 6PPD. Simultaneously, the mRNA levels of the genes related to cardiac functions (myl7, sox9, bmp10, and myh71) also respond accordingly. H&E staining and heart morphology investigation indicated that cardiac malformation occurred in zebrafish larvae exposed to 100 mu g/L of 6PPD. Furthermore, the phenotypic observation of transgenic Tg (myl7: EGFP) zebrafish also confirmed that 100 mu g/L of 6PPD exposure could change the distance of atria and ventricles of the heart and inhibit some key genes (cacnb3a, ATP2a1l, ryr1b) related to cardiac function in larval zebrafish. These results revealed the toxic effects of 6PPD on the cardiac system of zebrafish larvae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据