4.7 Article

Effects of phosphate addition on the removal of disinfection by-product formation potentials by biological activated carbon filtration

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 882, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163534

关键词

Anoxic condition; Chloramination; Chlorination; Disinfection by-products; Oxic condition; Phosphate

向作者/读者索取更多资源

The study investigated the short-term and long-term effects of phosphate addition on the formation potentials of disinfection byproducts (DBPs) by biological activated carbon filters (BACFs). The results showed that short-term phosphate addition improved the removal of dissolved organic matter (DOM) and various types of DBPs, but long-term addition led to a decrease in these removals.
In drinking water treatment plants (DWTPs), the widely used biological activated carbon filters (BACFs), as the last barrier before disinfection, can remove dissolved organic matter (DOM) known as precursors of disinfection byproducts (DBPs). Whether phosphate addition can improve water purification and DBP control of BACFs is still controversial. This study investigated short-term and long-term effects of phosphate addition on controlling DBP formation potentials (FPs) by BACFs via column and batch experiments. The BAC columns presented good water purification performance: they removed around 50 % DOM, nearly all fulvic acid-likes and humic acid-likes as well as 5 %-70 % chlor (am)innated THM4, HAA9 and HAN4 FPs (except chloraminated THM4 FPs), which was mainly contributed by aerobic bacteria not anoxic bacteria. Phosphate addition within 7-14 days further improved removals of DOM, aromatic organics, fluorescence fractions in DOM as well as HAA9 and HAN4 FPs (especially TCAA FP and TCAN FP) to different extent. However, this improvement did not last longer, and removals of DOM, aromatic organics, two fluorescence fractions (soluble microbial byproduct-likes and humic acid-likes) and DBP FPs decreased despite long-term phosphate addition. Oxic and anoxic batch experiments showed that the positive response of water purification to short-term phosphate addition was also mainly attributed to aerobic bacteria and not to anoxic bacteria. For example, the former decreased DOM and DBP FPs, while the latter increased protein- and tryptophan-like substances as well as chloraminated THM4 FPs. Phosphate addition resulted in EPS increase in anoxic reactors and decrease in oxic reactors. These results indicated that a high dissolved oxygen in BACFs may be helpful for water purification and DBP control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据