4.7 Article

Impacts and mechanism of biodegradable microplastics on lake sediment properties, bacterial dynamics, and greenhouse gasses emissions

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 900, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.165727

关键词

Microplastics; Greenhouse gas; Microbial community; Dissolved organic carbon; Anaerobic respiration

向作者/读者索取更多资源

The accumulation of microplastics in freshwater ecosystems has a significant impact on greenhouse gas emissions from lake sediment by affecting sediment properties and microbial communities. A study showed that the addition of biodegradable microplastics led to a significant increase in carbon dioxide and methane emissions compared to conventional microplastics, due to the higher availability of dissolved organic carbon for microbial respiration. Furthermore, the emissions further increased with higher concentrations of biodegradable microplastics. These microplastics also altered the microbial community structure and increased the abundance of specific microbial groups, ultimately enhancing anaerobic respiration and exacerbating greenhouse gas emissions.
The accumulation of microplastics (MPs) in freshwater ecosystems plays a vital role in greenhouse gases (GHGs) emissions from lake sediment by altering sediment properties and microbial communities. Thus, a short-term microcosm experiment was performed to explore the effect of conventional polyethylene (PE) and biodegradable Poly (butylene-adipate-co-terephtalate) (PBAT) MPs on carbon dioxide (CO2) and methane (CH4) emissions from lake sediment and associated microbial community. The results indicated that at 1.0 % concentration, the cumulative CO2 emissions were increased by 16.8 % and the cumulative CH4 emissions were increased more than four times following the addition of biodegradable MPs compared to conventional MPs, which was due to the more dissolved organic carbon (DOC) provided by biodegradable MPs for microbial respiration. Furthermore, the cumulative CO2 and CH4 emissions significantly (p < 0.05) increased with the increasing concentrations of biodegradable MPs. Notably, the accumulation of MPs could weaken the microbial stress from requirements of energy and substrate, and increase the microbial biomass carbon (MBC) value, thus eventually improving the respiratory capacity of microbes. In addition, the biodegradable MPs significantly increased the abundance of microbes, such as Firmicutes, Myxococcota and Actinobacteriota, which were related to the function of anaerobic respiration. Overall, we concluded that the abundant DOC provided by biodegradable MPs could promote the growth of microbes in lake sediment, and they could change the structure and diversity of the microbial community, which would eventually enhance the anaerobic respiration of microbes and aggravate the GHGs emissions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据