4.7 Article

Core community drives phyllosphere bacterial diversity and function in multiple ecosystems

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 896, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.165187

关键词

Phyllosphere; Core community; Environmental heterogeneity; Functional structure; Co-occurrence pattern

向作者/读者索取更多资源

This study collected 287 phyllosphere bacterial communities from seven ecosystems in east-China and found a similar regional core community that comprised 44.9% of the total bacterial abundance. The regional core community was less affected by environmental variables and less connected in the co-occurrence network compared with other non-core OTUs. This suggests the existence of a robust regional core phyllosphere community regardless of ecosystem or spatial and environmental heterogeneity.
The phyllosphere provides a habitat for a large sum of microorganisms which are modulated by numerous biotic and abiotic factors. While it is logical that host lineage must have some effect on the phyllosphere habitat, it is unclear if phyllospheres harbor similar microbial core communities across multiple ecosystems at the continental-scale. Here we collected 287 phyllosphere bacterial communities from seven ecosystems (including paddy field, dryland, urban area, protected agricultural land, forest, wetland, and grassland) in east-China to identify the regional core community and to characterize the importance of such communities in maintaining phyllosphere bacterial community structure and function. Despite significantly different bacterial richness and structure, the seven studied ecosystems contained a similar regional core community of 29 OTUs that comprised 44.9 % of the total bacterial abundance. The regional core community was less affected by environmental variables and less connected in the co-occurrence network compared with other non-core OTUs (the whole minus regional core community). Furthermore, the regional core community also had a large proportion (>50 %) of a constrained set of nutrient metabolism related functional potentials and less functional redundancy. This study suggests there is a robust regional core phyllosphere community regardless of ecosystem or spatial and environmental heterogeneity, and supports the argument that core communities are pivotal in maintaining microbial community structure and function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据