4.7 Article

Cytosolic distribution of copper in the gills of field-collected oysters with different copper bioaccumulation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 899, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.165631

关键词

Oyster; Copper; Subcellular distribution; SEC-ICP-MS; Cytosolic proteins

向作者/读者索取更多资源

This study investigated the distribution of copper (Cu) in cytosolic proteins (CPs) in the gills of oysters through size-exclusion chromatography. It was found that the Cu concentrations in CPs were 8.6 times higher in oysters with high Cu concentrations compared to low concentrations. The study also revealed the critical role of macromolecular protein complexes in binding excess Cu in oysters.
Oysters can hyper-accumulate copper (Cu) without apparent toxicity, but the mechanism of sequestering excessive cytosolic Cu in oysters remains unclear. We here investigated the Cu distribution in the cytosolic proteins (CPs) in the gills of oysters (Crassostrea hongkongensis) through size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Oysters collected from the southern coast of China contained a gradient of gill Cu concentrations ranging from 132 to 3540 & mu;g g-1 (dry weight), with 7-41 % of Cu distributed in the CPs fraction. The CPs-Cu concentrations were 8.6 times higher in oysters with high Cu concentrations compared to low concentrations. In the CPs, Cu was dispersed with a broad range of molecular weight, suggesting the involvement of various cytosolic proteins in Cu binding. Among the 10 major Cu peaks, peaks 2 (>600 kDa) and peak 8 (18 kDa) contained substantial Cu and showed obvious differences in response to the variation of CPs-Cu levels. Peak 8 contained metallothionein-like proteins that decreased their role in Cu binding as CPs-Cu concentrations increased. LC-MS/MS analysis revealed that peak 2 contained macromolecular protein complexes (MPCs), which played a critical role in binding excess Cu. The comparison with other bivalve species further suggested that sequestering excess CPs-Cu in MPCs was a special strategy employed by oysters in response to high Cu accumulation. This study provides valuable insights into the mechanism of hyperaccumulation and sequestration of Cu in oysters and helps to better understand Cu biomonitoring by oysters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据