4.7 Article

Vegetation-induced asymmetric diurnal land surface temperatures changes across global climate zones

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 896, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.165255

关键词

Diurnal temperature cycle; Diurnal temperature asymmetry global; vegetation greening; Global warming; Climate change

向作者/读者索取更多资源

The study investigates the impact of observed vegetation cover change on daytime and nighttime land surface temperatures (LST) during the growing season globally. The results show asymmetric warming trends in daytime and nighttime LST, leading to a decline in the diurnal LST range. Air temperature is found to be the dominant contributor to the LST changes, while increased leaf area index (LAI) has a cooling effect on daytime LST and a warming effect on nighttime LST.
Unprecedented global vegetation greening during past decades is well known to affect annual and seasonal land surface temperatures (LST). However, the impact of observed vegetation cover change on diurnal LST across global climatic zones is not well understood. Using global climatic time-series datasets, we investigated the long-term growing season daytime and nighttime LST changes globally and explored associated dominant contributors including vegetation and climate factors including air temperature, precipitation, and solar radiation. Results revealed asymmetric growing season mean daytime and nighttime LST warming (0.16 & DEG;C/10a and 0.30 & DEG;C/10a, respectively) globally from 2003 to 2020, as a result, the diurnal LST range (DLSTR) declined at 0.14 & DEG;C/10a. The sensitivity analysis indicated the LST response to changes in LAI, precipitation, and SSRD mainly concentrated during daytime instead of nighttime, however, which showed comparable sensitivities for air temperature. Combining the sensitivities results and the observed LAI and climate trends, we found rising air temperature contributes to 0.24 & PLUSMN; 0.11 & DEG;C/10a global daytime LST warming and 0.16 & PLUSMN; 0.07 & DEG;C/10a nighttime LST warming, turns to be the dominant contributor to the LST changes. Increased LAI cooled global daytime LST (-0.068 & PLUSMN; 0.096 & DEG;C/10a) while warmed nighttime LST (0.064 & PLUSMN; 0.046 & DEG;C/10a); hence LAI dominates declines in DLSTR trends (-0.12 & PLUSMN; 0.08 & DEG;C/10a), despite some daynight process variations across climate zones. In Boreal regions, reduced DLSTR was due to nighttime warming from LAI increases. In other climatic zones, daytime cooling, and DLSTR decline, was induced by increased LAI. Biophysically, the pathway from air temperature heats the surface through sensible heat and increased downward longwave radiation during day and night, while the pathway from LAI cools the surface by enhancing energy redistribution into latent heat rather than sensible heat during the daytime. These empirical findings of diverse asymmetric responses could help calibrate and improve biophysical models of diurnal surface temperature feedback in response to vegetation cover changes in different climate zones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据