4.7 Article

Plastisphere and microorganisms involved in polyurethane biodegradation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 886, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163932

关键词

Polyurethane (PUR); Plastisphere; Impranil; Biodegradation; Pseudomonas strain PHC1

向作者/读者索取更多资源

The rapid accumulation of end-of-life polyurethanes (PUR) in the environment is a global crisis. This study investigated the microbial community involved in PUR biodegradation and isolated and characterized two PUR-utilizing isolates. The results showed the potential of Pseudomonas in the rapid biodegradation of PUR foam.
Rapid accumulation of end-of-life polyurethanes (PUR) in the environment is a global crisis. While biodegradation of PUR has been reported, the process is slow, and the microbiology involved in PUR biodegradation is poorly under-stood. This study reported the microbial community involved in PUR biodegradation (designed as PUR-plastisphere) in estuary sediments, and isolation and characterization of two PUR-utilizing isolates. PUR foams were pretreated with oxygen plasma (referred as p-PUR foams) to mimic weathered conditions before embedded in micro-cosms containing estuary sediments. After 6 months of incubation, a substantial loss of ester/urethane bonds on the embedded p-PUR foams was observed, according to Fourier transform infrared (FTIR) spectroscopy. Analysis of PUR-plastisphere showed two dominant genera, Pseudomonas (2.7 %) and Hyphomicrobium (3.0 %), along with many unknown genera in Sphingomonadaceae (9.2 %), and predicted hydrolytic enzymes such as esterases and prote-ases. Purpureocillium sp., and Pseudomonas strain PHC1 (designated as strain PHC1 hereafter), isolated from the PUR plastisphere, can grow on Impranil (a commercial water-borne PUR) as a sole nitrogen or carbon source. High esterase activities were detected in the spent Impranil-containing media, and a significant loss of ester bonds of the spent Impranil was also observed. After 42 days of incubation, the strain PHC1-inoculated p-PUR foam showed a noticeable development of biofilm as observed via scanning electron microscopy (SEM), and disappearance of ester and urethane bonds of the PUR as detected by FTIR, supporting the role of strain PHC1 in biodegradation of the p-PUR foam. Also, the FTIR spectra observed for the sediment-embedded p-PUR foams was similar to those for the strain PHC1-inocu-lated p-PUR foams, suggesting the potential role of the dominant species of Pseudomonas in PUR-plastisphere. The re-sults of this study showed the promise of rapid biodegradation of PUR foam through inoculating with a PUR-utilizing isolate, Pseudomonas strain PHC1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据