4.7 Article

Divergent effects of intensified precipitation on primary production in global drylands

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 892, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.164736

关键词

Dryland; Primary production; Intensity; Precipitation; Bioclimate gradient

向作者/读者索取更多资源

Intensified precipitation can increase or decrease GPP in dry or normal years, respectively, but this effect is largely weakened in wet years. Land cover types and soil texture regulate the magnitude of these effects on GPP.
Amplification of hydrological cycle under warming climate is anticipated to result in intensified precipitation characterized by fewer, more intense events and correspondingly longer dry intervals between events, even without major changes in annual total precipitation. Vegetation gross primary production (GPP) in drylands is highly responsive to intensified precipitation, however, how intensified precipitation influences GPP in global drylands is not well understood. Based on multiple satellite datasets from 2001 to 2020 and in-situ measurements, we investigated the effects of intensified precipitation on global drylands GPP under diverse annual total precipitation along the bioclimate gradient. Dry, normal, and wet years were identified as years with annual precipitation anomalies below, within, and above the range of one standard deviation. Intensified precipitation led to increases or decreases of GPP during dry or normal years, respectively. However, such effects were largely weakened during wet years. The responses of GPP to intensified precipitation were mirrored by soil water availability, as intensified precipitation enhanced root zone soil moisture, and thus vegetation transpiration and precipitation use efficiency during dry years. During wet years, root zone soil moisture showed less response to changed precipitation intensity. Land cover types and soil texture regulated the magnitude of the effects along the bioclimate gradient. Under intensified precipitation, shrubland and grassland distributed in drier region with coarse soil texture showed greater increases of GPP during dry years. As global precipitation will likely further intensify, the impacts of intensified precipitation on dryland carbon uptake capacity will be highly diverse along the bioclimate gradients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据