4.7 Review

Eutrophication control of large shallow lakes in China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 881, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163494

关键词

Large shallow lake; Hydrodynamics; Eutrophication control; The middle and lower Yangtze River; Limnology

向作者/读者索取更多资源

Large and shallow freshwater lakes in the middle and lower Yangtze River (MLYR), China, are highly susceptible to eutrophication and cyanobacteria blooms due to extensive sediment-waterr interface and internal loading from sediment. The studies on these lakes have emphasized the importance of addressing in-lake physical and biogeochemical processes to control eutrophication.
Large shallow lake refers to a polymictic system that is often well mixed without stratification during summer. Similar to a small and deep lake, a large and shallow lake has a high nutrient retention rate. Differing from a small and deep lake, it has an extensive sediment-water interface and internal loading from sediment, which has led to high susceptibility to eutro-phication. There are many large and shallow freshwater lakes in the middle and lower Yangtze River (MLYR), China, ex-perienced eutrophication and cyanobacteria blooms. To address this issue, a variety of methods focused on in-lake physical and biogeochemical processes was explored. The main gains of these studies included: (1) shallow lakes in the floodplain of the Yangtze River are prone to eutrophication because of their high trophic conditions; (2) wind-induced waves determine sediment resuspension, downward dissolved oxygen penetration, and upward soluble reactive nutrient mobilization, while wind-driven currents regulate the spatial distribution of water quality metrics and algal blooms; (3) the low P loss of shallow lakes via sedimentation and high N loss via denitrification lead to a low N:P ratio and N and P colimitation, which demonstrated the significance of dual N and P reduction for eutrophication control in shallow lakes; (4) extensive submerged macrophyte could suppress internal loading in large, shallow waters, but nutrient loading must be reduced and water clarity must be increased; and (5) climate warming promotes cyanobacterial blooms through positive feedback to exacerbate eutrophication in shallow lakes. The lack of action to address the challenges of non-point source pollution and internal loading from the sediment has led to limited effectiveness of eutrophication control in large shallow lakes under climate warming. In the future, the management of large shallow eutrophic lakes in China must com-bine social sciences (economic development) with natural technology (pollution reduction) to achieve sustainability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据