4.7 Article

Genetic basis for the biodegradation of a polyether-polyurethane-acrylic copolymer by a landfill microbial community inferred by metagenomic deconvolution analysis

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 881, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163367

关键词

Biodegradation; Metagenome; Microbial community; Polyurethane

向作者/读者索取更多资源

Plastic accumulation is a worldwide problem and polyurethane is a particularly difficult plastic to degrade. This study explores the ability of the BP6 microbial community to degrade a commercial coating containing a polyether polyurethane copolymer and various additives. The study identifies new metabolic pathways and suggests that the BP6 community could be a potential tool for polyurethane bio-recycling.
Plastic accumulation in the world amounts to approximately 8300 million tons. Polyurethanes (PU) account for 7.7 % of total plastics production worldwide, and their diverse chemical composition makes them highly recalcitrant to bio-degradation. Several works have reported polyurethane-degrading microbial communities. However, it is still neces-sary to learn more about the chemical, biochemical, and genetic bases linked to the polyurethanolytic phenotype and the microbial taxonomic determinants responsible for metabolizing the PU polymer and its associated chemical additives. To shed light on this problem, we applied physical, chemical, biochemical, metagenomic, and bioinformatic analyses to explore the biodegradation capability and related biochemical and genetic determinants of the BP6 microbial community that can grow in PolyLack, a commercial coating containing a polyether polyurethane acrylate (PE-PU-A) copolymer and several additives, as sole carbon source. We observed complete additives (isopropanol, N- methyl-2-pyrrolidone, 2-butoxyethanol, alkyl glycol ethers) biodegradation and the appearance of released polymer components (toluene diisocyanate (TDI) and methylene diphenyl diisocyanate (MDI) derivatives), and multiple degra-dation products since early cultivation times. The Hi-C metagenomic analysis identified a complex microbiome with 35 deconvolved Metagenome-Assembled Genomes (MAGs) - several new species - and biodegradation markers that suggest the coexistence of hydrolytic, oxidative, and reductive metabolic strategies for degrading the additives and the PU copolymer. This work also provides evidence of the metabolic capability the BP6 community has for biodegrading polyether polyurethane foams. Based on these analyses, we propose a novel metabolic pathway for 4,4 '-methylenedianiline (MDA), an initial biodegradation intermediate of MDI-based PU, encoded in the complex BP6 community metagenome and suggest that this community is a potential biotechnological tool for PU bio-recycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据