4.7 Article

Tracing the route: Using stable isotope analysis to understand microplastic pathways through the pelagic-neritic food web of the Tyrrhenian Sea (Western Mediterranean)

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 885, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163875

关键词

Marine litter; Microplastic ingestion; Pelagic fish; Trophic level; Accidental ingestion; Trophic transfer

向作者/读者索取更多资源

This study investigates the relationship between microplastic ingestion and the trophic ecology of three pelagic fish species from the Tyrrhenian Sea. Results show that different fish species play different ecological roles and that microplastic ingestion is influenced by the trophic position of the fish. The study provides new insights into the impact of microplastic contamination on the pelagic community.
This study provides a pilot investigation of the relationship between microplastic ingestion and the trophic ecology of three pelagic fish species (Engraulis encrasicolus, Scomber scombrus, and Trachurus trachurus) from Anzio coast, Tyrrhenian Sea (Western Mediterranean). Stable isotope analysis has been performed to determine the trophic position and the isotopic niche of the three species. Then, data on the occurrence, abundance, and diversity of ingested microplastics have been analyzed considering the observed foraging patterns. The detected differences in the estimated trophic position (E. encrasicolus = 3.08 & PLUSMN; 0.18; S. scombrus = 3.57 & PLUSMN; 0.21; T. trachurus = 4.07 & PLUSMN; 0.21), together with the absence of overlap in the isotopic niches confirm that the three examined species cover different ecological roles within the coastal-pelagic food web. Results from the analysis of ingested microplastics show that the trophic position has no remarkable effects on the incidence of microplastic ingestion, with no significant differences detected in terms of both frequency of occurrence and number of ingested microplastics per individual. However, differences among species emerge when considering the diversity of ingested microplastic types in terms of shape, size, color, and polymer composition. Species at higher trophic levels have shown to ingest a greater diversity of microplastics, including a significant increase in the size of the ingested particles (median surface area: 0.011 mm2 in E. encrasicolus; 0.021 mm2 in S. scombrus; 0.036 mm2 in T. trachurus). The ingestion of larger microplastics might be due to the larger gape sizes but also to active selection mechanisms, likely stimulated by the similarity of these particles to natural or potential prey of both S. scombrus and T. trachurus. Overall, this study suggests that microplastic ingestion can be affected by the different trophic position of fish species, providing new insights about the impact of microplastic contamination on the pelagic community.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据