4.5 Review

Photosynthetic microbial fuel cells: practical applications of electron transfer chains

期刊

RUSSIAN CHEMICAL REVIEWS
卷 92, 期 5, 页码 -

出版社

ND Zelinsky Inst Organic Chemistry, RAS - ZIOC RAS
DOI: 10.57634/RCR5073

关键词

-

向作者/读者索取更多资源

Membrane electron transfer is essential for energy conversion in central metabolic pathways. Photosynthetic and respiratory electron transport chains can generate proton gradients from sunlight or chemical energy. The use of these apparatuses as energy convertors, especially those based on photosynthesis, has gained interest due to their availability and eco-friendliness. This article reviews the latest advances and challenges in this field.
Membrane electron transfer underlies the central metabolic pathways for energy conversion. The photosynthetic and respiratory electron transport chains are complex apparatuses capable of generating a transmembrane proton gradient from sunlight or chemical energy. Recent exploitation of these apparatuses as energy convertors is of interest due to the availability and eco-friendliness of the biomaterial. Devices that utilize chemotrophic microorganisms to generate electricity have been known for over one hundred years. In these systems, called microbial fuel cells (MFC), one or more microorganisms catalyze charge transfer from a consumable substrate (acetate, glucose, etc.) to the electrode. Recently, MFCs based on phototrophic organisms have been actively developed. These devices, called photosynthetic microbial fuel cells (PMFC), still resemble the conventional MFC in that they also use living microbial cells to convert chemicals to electrical energy. However, the distinction between these two classes of fuel cells is that theMFCutilizes only the chemical energy of the organic substrate. At the same time, PMFCs are also capable of using solar energy. Common to both devices is the ability to utilize intrinsic electron transfer chains of bacterial metabolism as the primary mechanism of energy conversion. The widespread and accessible solar energy may permit PMFCs based on photosynthesis to become an inexpensive and efficient method for sunlight conversion. MFCs based on heterotrophs may be more promising in wastewater remediation and other ecological applications. This article reviews the latest advances in this field and emphasizes the remaining challenges. The bibliography includes 205 references.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据