4.7 Article

Investigating the X-ray time lags in PG 1244+026 using an extended corona model

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stw2964

关键词

accretion, accretion discs; black hole physics; galaxies: active; galaxies: individual: PG 1244+026; X-rays: galaxies

资金

  1. University of Bristol
  2. STFC [ST/M000907/1] Funding Source: UKRI

向作者/读者索取更多资源

We present an extended corona model based on ray-tracing simulations to investigate X-ray time lags in active galactic nuclei (AGNs). This model consists of two axial point sources illuminating an accretion disc that produce the reverberation lags. These lags are due to the time delays between the directly observed and reflection photons and are associated with the light-travel time between the source and the disc, so they allow us to probe the disc-corona geometry. We assume the variations of two X-ray sources are triggered by the same primary variations, but allow the two sources to respond in different ways (i.e. having different source responses). The variations of each source induce a delayed accretion disc response and the total lags consist of a combination of both source and disc responses. We show that the extended corona model can reproduce both the low-frequency hard and high-frequency soft (reverberation) lags. Fitting the model to the timing data of PG 1244+ 026 reveals the hard and soft X-ray sources at similar to 6r(g) and similar to 11r(g), respectively. The upper source produces small amounts of reflection and can be interpreted as a relativistic jet, or outflowing blob, whose emission is beamed away from the disc. This explains the observed lag energy in which there is no soft lag at energies <1 keV as they are diluted by the soft continuum of the upper source. Finally, our models suggest that the fluctuations propagating between the two sources of PG 1244+026 are possible but only at near the speed of light.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据