4.7 Article

The effect of initial temperature and external heat flux on the H2 and CO production by biomass gasification using molecular dynamics simulation

期刊

RENEWABLE ENERGY
卷 215, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2023.119011

关键词

Biomass; Platinum nanocatalyst; Molecular dynamics; Initial temperatures; External heat flux; Combustion

向作者/读者索取更多资源

Biomass is a renewable and sustainable energy source produced from organic matter, which can be used to generate electricity or other forms of energy. It is considered a suitable alternative to fossil resources due to its environmental advantages.
Biomass is a fuel produced from organic matter, and a renewable and sustainable energy source used to generate electricity or other forms of energy. From an environmental point of view, biomass includes all materials found in nature. This resource can be a suitable alternative to fossil resources. Biomass is based on carbon particles, H2, O2, N2, and many other atoms, such as alkali metals and heavy metals. In this research, the changes in the number of H2, carbon monoxide (CO) molecules created, and combustion efficiency (CE) inside the simulation box, using molecular dynamics (MD) simulation in the presence of 10 % platinum nanocatalyst with different initial temperatures (Temp) (1800, 1850, 1900 and 2000 K) and different external heat fluxes (EHF) (1, 2, 3 and 5 W/m2) were evaluated. The results show that as the Temp increased from 1800 to 2000 K, the number of H2 and CO molecules increased from 586 to 165 to 614 and 199, respectively. Besides, CE increased to 70% with the Temp increase to 2000 K. Furthermore, increasing the EHF from 1 to 5 W/m2, the number of H2 and CO mol-ecules decreases from 589 to 170 to 603 and 180, respectively, and the CE increases to 69 % with the EHF increasing to 5 W/m2. It is expected that by examining the effects of system Temp and EHF, and the presence of nanocatalysts, the production of the number of H2 molecules will reach the highest efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据