4.7 Article

Study of velocity centroids based on the theory of fluctuations in position-position-velocity space

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stw2512

关键词

magnetic fields; turbulence

资金

  1. ANR within the Investissements d'Avenir programme [ANR-10-LABX-63, ANR-11-IDEX-0004-02]
  2. NSF [AST 1212096]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Astronomical Sciences [1212096] Funding Source: National Science Foundation

向作者/读者索取更多资源

We study the possibility of obtaining power spectrum of gas velocity in the turbulent interstellar medium from spatial correlation of velocity centroids (VCs) of optically thick emission lines. Combining this study with the earlier studies of centroids in Esquivel & Lazarian, we conclude that centroids are applicable for studies of subsonic/transonic turbulence for sufficiently small line-of-sight (LOS) separations at which self-absorption does not affect correlation scalings. At larger LOS separations where self-absorption becomes important, we find that there is a range of scales over which VC correlation demonstrates the universal scaling, similar to the effect found in the velocity channel analysis (VCA). In other words, for large absorptions the VCs lose their ability to reflect the spectra of turbulence. We develop analytical formalism that relates statistical properties of underlying magnetohydrodynamical (MHD) turbulence to observable scaling and anisotropy of VC correlations arising from Alfven, slow and fast modes that constitute the compressible MHD modes, and show how the VC anisotropy can be used to find the media magnetization as well as to identify and separate the contributions from these MHD modes. Our study demonstrates that VCs are complementary to the VCA. In order to study turbulent volume with insufficient resolution of single-dish telescopes, we demonstrate how the studies of anisotropy can be performed using interferometers. We also suggest that restricted VC can be constructed for absorption lines by integrating LOS velocity weighted by the optical depth. We discuss the requirements for applicability of this approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据