4.8 Review

Recent development of advanced precipitation-strengthened Cu alloys with high strength and conductivity: A review

期刊

PROGRESS IN MATERIALS SCIENCE
卷 138, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pmatsci.2023.101141

关键词

Cu alloys; Precipitation strengthening; High strength; Electrical conductivity; Microstructure; Mechanisms

向作者/读者索取更多资源

Precipitation-strengthened Cu alloys with high strength and conductivity (HSC) have been widely used in the electronic and electrical industries. The primary objective is to enhance the strength of Cu alloys while maintaining high electrical conductivity. This review summarizes the research progress on typical precipitation-strengthened Cu-Ni-Si, Cu-Ti, and Cu-Cr-Zr alloys, as well as the strengthening mechanisms employed. It discusses hetero-deformation induced hardening, the construction and effect of heterogeneous structure, and the trade-off between strength, ductility, and electrical conductivity. Controlling the growth of phases to achieve maximum strength contribution is a key research breakthrough. Furthermore, considerations for large-scale industrialization and production costs are necessary for the development of Cu alloys with HSC.
Precipitation-strengthened Cu alloys with high strength and conductivity (HSC) has become widespread in the electronic and electrical industries. Although pure Cu exhibits high electrical and thermal conductivity, its strength is insufficient. Thus, the primary objective of developing Cu alloys with HSC is to substantially enhance their strength while retaining high electrical con-ductivity (EC). This review provides an overview of the research progress on typical precipitation -strengthened Cu-Ni-Si, Cu-Ti and Cu-Cr-Zr alloys, as well as the strengthening mechanisms employed. In particular, we discuss hetero-deformation induced (HDI) hardening, the construc-tion and effect of heterogenous structure in Cu alloys, and how the trade-off between strength, ductility, and EC can be better addressed by constructing a coupling distribution of hard and soft domains in alloys. Moreover, based on the precipitation strengthening mechanism, we calculate the Orowan contribution of two uniform ideal distributions of disc-like shape & delta;-Ni2Si phases, and propose an outlook. Notably, controlling the growth of phases to achieve maximum strength contribution is a key research breakthrough. Additionally, the development of Cu alloys with HSC must consider large-scale industrialization and production costs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据