4.7 Article

Biomass dust explosions: CFD simulations and venting experiments in a 1 m3 silo

期刊

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION
卷 176, 期 -, 页码 1048-1062

出版社

ELSEVIER
DOI: 10.1016/j.psep.2023.06.074

关键词

Vented dust explosions; Biomass; CFD; OpenFOAM

向作者/读者索取更多资源

This study presents CFD simulations of biomass dust explosions using a newly developed experimental apparatus, and validates the CFD model's capability to capture transient effects. The results show excellent agreement between the model and experiments, highlighting the critical role of particle size in flame dynamics and the explosion itself. This model has great potential for future investigations of biomass dust explosions in larger-scale geometries.
This study presents CFD simulations of biomass dust explosions in a newly developed experimental 1 m3 silo apparatus with variable venting, designed and fabricated to operate similarly to the explosivity test standards. The aim of the study is to validate a CFD model under development and investigate its capability to capture the transient effects of a vented explosion. The model is based on OpenFOAM and solves the multiphase (gas-particle) flow using an Eulerian-Lagrangian approach in a two-way regime. It considers the detailed thermochemical conversion of biomass, including moisture evaporation, devolatilization, and char oxidation, along with the homogeneous combustion of gases, turbulence, and radiative heat transfer. The explosion is analyzed in all stages, i.e., dust cloud dispersion, ignition, closed explosion, and vented explosion. The results indicate excellent agreement between the CFD model and experimental tests throughout the sequence. Our findings highlight the critical role of particle size in dust cloud distribution and pre-ignition turbulence, which significantly influences flame dynamics and the explosion itself. This model shows great promise and encourages its application for future investigations of biomass dust explosions in larger-scale geometries, especially in venting situations that fall out of the scope of the NFPA 68 or EN 14491 standards, and to help design effective safety measures to prevent such incidents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据