4.7 Article

Models of interphase drag force from direct numerical simulations of upward turbulent particle-laden channel flows

期刊

POWDER TECHNOLOGY
卷 428, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.powtec.2023.118794

关键词

Drag model; Particle-laden flow; Turbulent channel flow; Interface-resolved simulations

向作者/读者索取更多资源

Data from IR-DNSs of upward turbulent channel flow laden with finite-size heavy particles are used to develop improved drag correlations accounting for turbulence effects. The contribution of drag nonlinearity to drag enhancement is analyzed, and several turbulence correction models are presented. Turbulent intensity, particle size, and slip velocity are found to be the most important factors in modeling the effect of turbulence on particle drag.
Data from the interfaced-resolved direct numerical simulations (IR-DNSs) of upward turbulent channel flow laden with finite-size heavy particles at particle concentration ranging from 0.84% to 2.36% are used to develop improved drag correlations which account for the effect of turbulence on drag enhancement. First, the contribution of drag nonlinearity to drag enhancement for the turbulent flow over a fixed sphere is analyzed with the consideration of velocity fluctuation anisotropy. The nonlinear drag enhancement is generally smaller than the actual drag enhancement in our numerical simulations. Second, several models for turbulence correction are presented with different choice of model parameters, and it is found that the turbulent intensity normalized by the mean slip velocity and the particle size normalized by the Kolmogorov scale are most important for modeling the effect of turbulence on particle drag, while the anisotropy of fluctuating velocity and the particle Reynolds number are less important.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据