4.7 Article

Bicarbonate-mediated dissolution of chitosan-based polyelectrolyte complex gels

期刊

POLYMER
卷 283, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2023.126242

关键词

Chitosan; Polyelectrolyte complex; Biopolymer; Dissolution; Sodium bicarbonate

向作者/读者索取更多资源

In this study, the dissolution of chitosan-based polyelectrolyte complex (PEC) gels in sodium bicarbonate solutions was systematically analyzed. The results revealed that the reversible conversion of chitosan amine groups to carbamate groups caused the dissolution of the PEC gels. The dissolution rates were influenced by the bicarbonate concentration and the stoichiometric imbalance between chitosan amine and alginate carboxylate groups.
Using chitosan/alginate polyelectrolyte complexes (PECs) as the primary model system, we demonstrate and systematically analyze mild and facile chitosan-based PEC gel dissolution in sodium bicarbonate (NaHCO3) solutions. The reversible conversion of chitosan amine groups to carbamate groups dissociates the ionic bonds between chitosan and its complexing polyanion while simultaneously solubilizing the dissociated chitosan, which causes the gels to dissolve. The PEC composition-dependent minimum NaHCO3 concentrations needed for this dissolution, for the materials examined herein, do not exceed a few hundred mM, and the dissolution rate increases with both the NaHCO3 concentration and the stoichiometric imbalance between the chitosan amine and alginate carboxylate groups within the PECs. The PEC dissolution rates also generally increase with the stirring speed but (depending on the PEC composition) can become insensitive to stirring when (1) the gels float and (2) at higher stirring speeds where transport of NaHCO3 to the PEC gel surface ceases to be a ratedetermining step in the dissolution process. While the above effects are primarily demonstrated using chitosan/alginate PECs, extension of this NaHCO3-mediated dissolution approach to other chitosan-based PECs (i.e., those formed with synthetic polyanions) is also demonstrated. Collectively, these findings advance a nondestructive method of dissolving chitosan-based PEC gels (which could be advantageous for their compositional analysis or recycling) and provide guidelines for this method's application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据