4.6 Article

Effect of miR-34a on the expression of clock and clock-controlled genes in DLD1 and Lovo human cancer cells with different backgrounds with respect to p53 functionality and 17β-estradiol-mediated regulation

期刊

PLOS ONE
卷 18, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0292880

关键词

-

向作者/读者索取更多资源

miR-34a strongly influences the expression of components of the circadian oscillator independently of p53 status and exerts its tumour suppressor effects by inhibiting the expression of sirt1 and cyclin D1 mRNA. 17-beta-estradiol (E2) administration also inhibits the migration and proliferation of colorectal cancer cells, but this effect is not dependent on the action of miR-34a. The possible ambiguous oncogenic characteristics of miR-34a should be considered in future clinical studies.
The small non-coding RNA miR-34a is a p53-regulated miRNA that acts as a tumour suppressor of colorectal cancer (CRC). Oncogenesis is also negatively influenced by deregulation of the circadian system in many types of tumours with various genetic backgrounds. As the clock gene per2 was recently recognized as one of the target genes of miR-34a, we focused on the miR-34a-mediated influence on the circadian oscillator in CRC cell lines DLD1 and LoVo, which differ in their p53 status. Previously, a sex-dependent association between the expression of per2 and that of miR-34a was demonstrated in CRC patients. Therefore, we also investigated the effect of 17 beta-estradiol (E2) on miR-34a oncostatic functions. miR-34a mimic caused a pronounced inhibition of per2 expression in both cell lines. Moreover, miR-34a mimic significantly inhibited bmal1 expression in LoVo and rev-erb alpha expression in DLD1 cells and induced clock gene expression in both cell lines. miR-34a mimic caused a pronounced decrease in sirt1 and cyclin D1 expression, which may be related to the inhibition of proliferation observed after mir-34a administration in DLD1 cells. E2 administration inhibited the migration and proliferation of DLD1 cells. E2 and miR-34a, when administered simultaneously, did not potentiate each other's effects. To conclude, miR-34a strongly influences the expression of components of the circadian oscillator without respect to p53 status and exerts its oncostatic effects via inhibition of sirt1 and cyclin D1 mRNA expression. E2 administration inhibits the growth of DLD1 cells; however, this effect seems to be independent of miR-34a-mediated action. With respect to the possible use of miR-34a in cancer treatment, clock genes can be considered as off-target genes, as changes in their expression induced by miR-34a treatment do not contribute to the oncostatic functions of miR-34a. Possible ambiguous oncogenic characteristics should be taken into consideration in future clinical studies focused on miR-34a.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据