4.6 Article

Postharvest bacterial succession on cut flowers and vase water

期刊

PLOS ONE
卷 18, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0292537

关键词

-

向作者/读者索取更多资源

This study compared the changes in 16S amplicons from different types of flowers and their vase water over time, and found that the relative abundance of plant chloroplast and mitochondria 16S decreased while bacterial diversity increased. The richness and evenness of bacterial communities also increased over time.
In cut flowers, xylem occlusion or blockage by bacteria negatively affects water balance and postharvest quality. Many studies have used culture-based methods to examine bacterial populations in vase water and their effects on flower longevity. It is still unclear if and how bacterial communities at the 16S rRNA gene (16S) level change during the vase period and how such change might correlate with postharvest longevity. This study compared the sequences of 16S amplicons from 4 different types of flowers and their vase water over the course of 7 days (Rosa spp., Gerbera jamesonii, and two Lilium varieties). The relative abundance of plant chloroplast and mitochondria 16S decreased significantly over the course 7 days in all 4 flowers as bacterial diversity increased. Richness and evenness of the bacterial communities increased over time, as did the number of rare taxa and phylogenetic diversity. Bacterial communities varied with time, as well as by flower source, types, and sample location (water, stem surface, whole stem). Some taxa, such as Enterobacteriacea and Bradyhizobiaceae decreased significantly over time while others such as Pseudomonas spp. increased. For example, Pseudomonas veronii, implicated in soft rot of calla lily, increased in both whole stem samples and water samples from Gerbera jamesonii. Erwinia spp., which includes plant pathogenic species, also increased in water samples. This work highlights the dynamic and complex nature of bacterial succession in the flower vase ecosystem. More work is needed to understand if and how bacterial community structure can be managed to improve cut flower vase life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据