4.6 Article

Correlation between cellular uptake and cytotoxicity of polystyrene micro/nanoplastics in HeLa cells: A size-dependent matter

期刊

PLOS ONE
卷 18, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0289473

关键词

-

向作者/读者索取更多资源

The cytotoxicity of micro/nanoplastics (MNPs) is strongly influenced by particle size, with smaller MNPs being more easily internalized by HeLa cells. Larger MNPs cannot enter cells at all. The toxic effect of MNPs on cell activity is dose-dependent and only observed in MNPs that can be internalized by cells. The size-dependent cytotoxicity of MNPs is attributed to increased reactive oxygen species (ROS) level and abnormal gene expression.
The cytotoxicity of micro/nanoplastics (MNPs) is known to be strongly influenced by particle size, but the mechanism is not clear so far. We reported the ability of polystyrene MNPs to be internalized by HeLa cells could be a reason for the size dependent cytotoxicity of MNPs. We found that small MNPs (10 nm and 15 nm in radius) could be efficiently internalized by HeLa cells, MNPs of 25 nm in radius could be slightly internalized by the cells, and larger MNPs could not enter the cells at all. We showed that only MNPs, which could be internalized by cells, had a toxic effect on cell activity in a dose-dependent manner. In contrast, MNPs, which could not be internalized by cells, showed no cytotoxicity even if at extremely high concentrations. We attributed the correlation between the size-dependent uptake of MNPs and the size-dependent cytotoxicity of MNPs to the enhanced reactive oxygen species (ROS) level and abnormal gene expression. Our study pointed out that cellular uptake is one of the most fundamental mechanisms for the cytotoxicity of MNPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据