4.6 Article

Absolute quantification of neuromelanin in formalin-fixed human brains using absorbance spectrophotometry

期刊

PLOS ONE
卷 18, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0288327

关键词

-

向作者/读者索取更多资源

Parkinson's disease is characterized by selective degeneration of pigmented neurons in the substantia nigra. Neuromelanin, which is difficult to study and quantify, plays an unclear role in the disease. A new quantification protocol has been developed to measure the absolute concentration of neuromelanin in formalin-fixed tissue, providing insights for biomarker development and further research into neuromelanin's role in Parkinson's disease.
Parkinson's disease is characterised by a visual, preferential degeneration of the pigmented neurons in the substantia nigra. These neurons are pigmented by neuromelanin which decreases in Parkinson's disease. Not much is known about NM as it is difficult to study and quantify, primarily due to its insolubility in most solvents except alkali. Neuromelanin quantification could progress the development of biomarkers for prodromal Parkinson's disease and provide insights into the presently unclear role of neuromelanin in Parkinson's disease aetiology. Light microscopy with stereology can visualise pigmented neurons, but it cannot quantify neuromelanin concentrations. Absolute neuromelanin quantification using absorbance spectrophotometry is reported in the literature, but the methodology is dated and only works with fresh-frozen tissue. We have developed a quantification protocol to overcome these issues. The protocol involves breakdown of fixed tissue, dissolving the tissue neuromelanin in sodium hydroxide, and measuring the solution's 350 nm absorbance. Up to 100 brain samples can be analysed in parallel, using as little as 2 mg of tissue per sample. We used synthetic neuromelanin to construct the calibration curve rather than substantia nigra neuromelanin. Our protocol enzymatically synthesises neuromelanin from dopamine and L-cysteine followed by high-heat ageing. This protocol enables successful lysis of the fixed substantia nigra tissue and quantification in three brains, with neuromelanin concentrations ranging from 0.23-0.55 & mu;g/mg tissue. Quantification was highly reproducible with an interassay coefficient of variation of 6.75% (n = 5). The absorbance spectra and elemental composition of the aged synthetic neuromelanin and substantia nigra neuromelanin show excellent overlap. Our protocol can robustly and reliably measure the absolute concentration of neuromelanin in formalin-fixed substantia nigra tissue. This will enable us to study how different factors affect neuromelanin and provide the basis for further development of Parkinson's disease biomarkers and further research into neuromelanin's role in the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据