4.5 Article

Plasma Treatment and Ozonation of Binary Mixtures: The Case of Maleic and Fumaric Acids

期刊

出版社

SPRINGER
DOI: 10.1007/s11090-023-10399-8

关键词

Dielectric barrier discharge; Water treatment; Ozone; OH radical

向作者/读者索取更多资源

This study investigates water treatment using plasma activation and ozonation methods for maleic acid and fumaric acid. The results show that plasma treatment is more efficient than ozonation, and fumaric acid is more reactive than maleic acid. S-shaped degradation curves were observed when treating a mixture of maleic acid and fumaric acid, but not when using phenol instead of fumaric acid.
With respect to ozonation, plasma treatment involves direct contact between the discharge and the contaminated water therefore benefiting, in addition to ozone, also of short-lived reactive species. This paper focuses on mechanistic aspects of water treatment based on plasma activation (in-situ discharge) and ozonation (ex-situ discharge), using maleic acid and fumaric acid as model substrates and dielectric barrier discharges (DBDs) for producing plasma and ozone. Both types of experiments were carried out at different pH values and degradation profiles of residual concentration vs treatment time were compared in experiments in which each acid was treated individually and in mixture with the other. It was found that, under all conditions examined, plasma treatment was more efficient than ozonation for both acids, and that fumaric acid was always more reactive than maleic acid. Peculiar S-shaped degradation curves were obtained for the decay of maleic acid when treated in mixture with fumaric acid under acidic and neutral pH conditions in ozonation and in plasma experiments. This effect was not observed when maleic acid was treated in mixture with phenol instead of fumaric acid. The experimental data are nicely fitted with a simple kinetic model which assumes that a single reactive species, in steady state concentration, is responsible for the attack initiating the pollutants degradation. Based on the complete set of results obtained the conclusion is reached that, in the DBD reactor used, under acidic and neutral pH conditions ozone plays a major role in the degradation of maleic and fumaric acids also in direct plasma treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据