4.7 Article

A non-specific lipid transfer protein, NtLTPI.38, positively mediates heat tolerance by regulating photosynthetic ability and antioxidant capacity in tobacco

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 200, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2023.107791

关键词

Non-specific lipid transfer proteins; Photosynthetic damage; Antioxidant activity; Heat tolerance

向作者/读者索取更多资源

NtLTPI.38 overexpression enhanced heat tolerance in tobacco by mitigating photosynthetic damage, improving osmoregulation, and enhancing antioxidant capacity.
Non-specific lipid transfer proteins (nsLTPs) play an important role in plant growth and stress resistance; however, their function in tobacco remains poorly understood. Therefore, to explore the function of NtLTP in response to high temperature, we identified an NtLTPI.38 from tobacco, obtained its overexpression and knockout transgenic plants, and further studied their response to heat stress (42 degrees C). The results showed that NtLTPI.38 overexpression in tobacco reduced chlorophyll degradation, alleviated the high temperature damage to photosynthetic organs, and enhanced the photosynthetic capacity of tobacco under heat stress. NtLTPI.38 overexpression in heat-stressed tobacco increased the contents of soluble sugar and protein, proline, and flavonoid substances, reduced the relative conductivity, and decreased H2O2, O-2(center dot-), and MDA accumulation, and increased the enzymatic antioxidant activities, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), compared to wild type (WT) and knockout mutant plants. RT-PCR confirmed that the expression levels of antioxidant enzymes and thermal stress-related genes were significantly upregulated under thermal stress in overexpression plants. Therefore, NtLTPI.38 enhanced heat tolerance in tobacco by mitigating photosynthetic damage and improving osmoregulation and antioxidant capacity. These results provided the theoretical basis and a potential resource for further breeding projects to improve heat tolerance in plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据