4.8 Article

Ethylene and jasmonate signaling converge on gibberellin catabolism during thigmomorphogenesis in Arabidopsis

期刊

PLANT PHYSIOLOGY
卷 -, 期 -, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/plphys/kiad556

关键词

-

向作者/读者索取更多资源

Touch induces ethylene production in Arabidopsis, which regulates GA metabolism through the ET and JA pathways to fine-tune GA4 content during thigmomorphogenesis.
Touch induces marked morphological changes in plants, including reduced rosette diameters and delayed flowering, a process called thigmomorphogenesis. Previous studies have revealed that thigmomorphogenesis in Arabidopsis (Arabidopsis thaliana) results from touch-induced accumulation of jasmonic acid (JA) and GIBBERELLIN 2-OXIDASE7 (GA2ox7) transcripts, which encode a gibberellin (GA) catabolism enzyme, leading to reduced levels of active GAs. However, the mechanisms underlying thigmomorphogenesis remain uncharacterized. Here, we showed that touch induces ethylene (ET) production in Arabidopsis. After touch treatment, ET biosynthesis and signaling mutants exhibited even greater thigmomorphogenic changes and more decreased GA4 contents than did wild-type (WT) plants. Biochemical analysis indicated that the transcription factor ETHYLENE INSENSITIVE3 (EIN3) of the ET pathway binds to the promoter of GA2ox8 (encoding another GA 2-oxidase performing the same GA modification as GA2ox7) and represses GA2ox8 transcription. Moreover, MYC2, the master regulator of JA signaling, directly promoted GA2ox7 expression by binding the G-box motif on GA2ox7 promoter. Further genetic analysis suggested that the ET and JA pathways independently control the expression of GA2ox8 and GA2ox7, respectively. This study reveals that the ET pathway is a novel repressor of touch-induced thigmomorphogenesis and highlights that the ET and JA pathways converge on GA catabolism but play opposite roles to fine-tune GA4 content during thigmomorphogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据