4.7 Article

A wheat WRKY transcription factor TaWRKY17 enhances tolerance to salt stress in transgenic Arabidopsis and wheat plant

期刊

PLANT MOLECULAR BIOLOGY
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11103-023-01381-1

关键词

Wheat; TaWRKY17; Salt stress; ROS; Transgenic plants

向作者/读者索取更多资源

The WRKY transcription factor TaWRKY17 plays a crucial role in enhancing salt tolerance in wheat by regulating ABA/ROS-related, and stress-response genes, and increasing anti-oxidative stress capabilities.
WRKY transcription factors are essential to plant growth, development, resistance, and the regulation of metabolic pathways. In this study, we characterized TaWRKY17, a WRKY transcription factor from wheat, which was differentially expressed in various wheat organs and was up-regulated by salt, drought, hydrogen peroxide (H2O2) and abscisic acid (ABA) treatment. To analyze TaWRKY17 function under salt stress, we obtained stable T3 generation transgenic Arabidopsis and wheat TaWRKY17 overexpression plants. TaWRKY17 overexpression in Arabidopsis and wheat caused a significant plant salt-stress tolerance enhancement. Under salt stress, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activities were elevated in transgenic Arabidopsis and wheat plants compared with the wild type (WT), whereas H2O2 and malondialdehyde (MDA) accumulation was reduced in the transgenic lines. Moreover, ABA/reactive oxygen species (ROS)-related, and stress-response genes were regulated in the transgenic wheat plants, increasing tolerance to salt stress. The transgenic wheat plants were highly sensitive to ABA during seed germination and early seedling growth. In addition, TaWRKY17 virus-induced gene silencing (VIGS) decreased salt tolerance. These results showed that TaWRKY17 enhances salt tolerance by regulating ABA/ROS-related, and stress-response genes and increasing anti-oxidative stress capabilities. Therefore, this gene could be a target for the genetic modification of wheat.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据