4.7 Article

Spatial distribution patterns and controls of bioavailable silicon in coastal wetlands of China

期刊

PLANT AND SOIL
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11104-023-06224-y

关键词

Silicon bioavailability; Vegetation composition; Climate change; Soil processes; Silicon-carbon coupling; Coastal wetlands

向作者/读者索取更多资源

This study found that plant available silicon (ASi) content in coastal wetlands in China is mainly influenced by soil pH, particle size, and nutrients. Vegetation composition and plant-derived lignin have a minor effect on ASi patterns. Mean annual temperature and precipitation indirectly regulate ASi content by affecting soil geochemistry and nutrient distribution. Therefore, ASi distribution in China's coastal wetlands is mainly controlled by primary pedogenesis and specific weathering processes.
AimsSilicon (Si) is an essential element for siliceous organisms, including macrophytes, phytoplankton, and diatoms. Coastal wetlands are critical for bridging the river-estuary-ocean continuum to drive the biogeochemical Si cycles. However, it remains unclear about the contents and distribution patterns of bioavailable Si in soils under various scenarios, and their environmental controls in coastal wetlands.MethodsWe conducted a nationwide sampling campaign across ca. 5000 km of coastal wetlands, covering temperate, subtropical, and tropical climates in China, and quantified plant available Si (ASi) using calcium chloride extractable Si (Si-CaCl2).ResultsS. alterniflora invasion did not significantly influence ASi content. In contrast, ASi content in the subtropical zone was higher than in the both temperate (medium) and tropical zones (lowest). ASi content was significantly positively correlated with nutrients (i.e., soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP)), soil water content (SWC), clay and silt contents, but negatively with soil bulk density (BD) and sand content. ASi content, in detail, increased with increasing pH (pH < 7) but decreased with increasing pH (pH > 7), showing a quadratic function relationship.ConclusionsASi in coastal wetlands was predominately directly influenced by pH, particle size, and nutrients of coastal soil, while vegetation compositions and plant-derived lignin (?(8)) inputs illustrated a minor effect on ASi patterns. Mean annual temperature (MAT) and precipitation (MAP) indirectly regulated ASi content via affecting soil geochemistry and nutrients distribution. Taken together, ASi distribution are mostly controlled by primary pedogenesis and specific weathering processes in China's coastal wetlands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据