4.6 Article

Catalytic Oxidation of NO over MnOx-CeO2 and MnOx-TiO2 Catalysts

期刊

MOLECULES
卷 21, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/molecules21111491

关键词

MnOx-CeO2; MnOx-TiO2; catalytic oxidation; NO; SO2

资金

  1. National Natural Science Foundation of China [21377009]

向作者/读者索取更多资源

A series of MnOx-CeO2 and MnOx-TiO2 catalysts were prepared by a homogeneous precipitation method and their catalytic activities for the NO oxidation in the absence or presence of SO2 were evaluated. Results show that the optimal molar ratio of Mn/Ce and Mn/Ti are 0.7 and 0.5, respectively. The MnOx-CeO2 catalyst exhibits higher catalytic activity and better resistance to SO2 poisoning than the MnOx-TiO2 catalyst. On the basis of Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and scanning transmission electron microscope with mapping (STEM-mapping) analyses, it is seen that the MnOx-CeO2 catalyst possesses higher BET surface area and better dispersion of MnOx over the catalyst than MnOx-TiO2 catalyst. X-ray photoelectron spectroscopy (XPS) measurements reveal that MnOx-CeO2 catalyst provides the abundance of Mn3+ and more surface adsorbed oxygen, and SO2 might be preferentially adsorbed to the surface of CeO2 to form sulfate species, which provides a protection of MnOx active sites from being poisoned. In contrast, MnOx active sites over the MnOx-TiO2 catalyst are easily and quickly sulfated, leading to rapid deactivation of the catalyst for NO oxidation. Furthermore, temperature programmed desorption with NO and O-2 (NO + O-2-TPD) and in situ diffuse reflectance infrared transform spectroscopy (in situ DRIFTS) characterizations results show that the MnOx-CeO2 catalyst displays much stronger ability to adsorb NOx than the MnOx-TiO2 catalyst, especially after SO2 poisoning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据