4.7 Article

Wake interaction of aligned wind turbines over two-dimensional hills

期刊

PHYSICS OF FLUIDS
卷 35, 期 10, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0168961

关键词

-

向作者/读者索取更多资源

An experimental investigation was conducted to explore the interaction and wake statistics of model wind turbines operating over two-dimensional hills. The results indicate that the advection terms play a more significant role than turbulence in the wake recovery mechanism with steeper hill slopes.
An experimental investigation was carried out to explore the interaction and wake statistics of model wind turbines operating individually and in pairs over two-dimensional hills with varying heights. The hills shared a sinusoidal shape and extended L / D = 20 in the streamwise direction, where D represents the diameter of the turbine rotor. The peak heights of the hills were H / D = 0, 0.5, 1, and 1.5. The first turbine was located at the beginning of the hill development, and the second turbine was positioned halfway between the first and the hill's peak, downwind. The flow in the intermediate wake regions was characterized using particle image velocimetry, focusing on the recovery mechanisms of streamwise momentum on the windward side of the hills, ranging from gentle to steep-up slopes. The results indicate that the advection terms play a more significant role than turbulence in the wake recovery mechanism with steeper hill slopes. Associated reduced turbulence levels are attributed to flow acceleration, which led to a higher power availability at the top of the hills.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据