4.7 Article

Mach reflection of detonation waves over a porous concave wedge

期刊

PHYSICS OF FLUIDS
卷 35, 期 8, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0161672

关键词

-

向作者/读者索取更多资源

An experimental study was conducted to investigate the difference in Mach reflection process over smooth and porous concave wedges. The results show that the introduction of multiple pores on the concave surface leads to an additional attenuation region and alters the triple-point trajectory. The transition angle of Mach-to-regular reflection over porous wedges is found to be negatively correlated with the length-scale ratio, gas instability, and porosity.
An experimental study of the differences in the Mach reflection process over smooth and porous concave wedges was systematically performed based on soot track measurement. Meanwhile, the interaction mechanism among the incident detonation, the Mach stem, and the porous wall was analyzed in detail. The results show that introducing multiple pores on the concave surface induces an additional attenuation region. In contrast, the triple-point over porous wedges starts traveling later and ends up colliding with the concave surface earlier. Moreover, the Mach stem height is shorter at the same wall position. For the transition angle of Mach-to-regular reflection over porous wedges, it is found to be negatively correlated with the length-scale ratio R/lambda of the radius of curvature (R) to the cell size (lambda), gas instability, and porosity. Although the experimental transition angle disagrees with the Chester-Chisnell-Whitham (CCW) and the reactive CCW theories, it is in agreement with the trend over smooth wedges that the experimental transition angle approaches to reactive CCW theory as R/lambda increases. For the triple-point trajectory, it is almost a straight line when wall angle theta <= 30 degrees at R = 522 mm. It is also found that the triplepoint trajectory is similar at the beginning for different mixture compositions at an equivalent initial pressure. The height of the Mach stem is shorter over a porous wedge with higher porosity, but it reaches a maximum value at a wall angle of 30 degrees for wedges. Moreover, the Mach stem height decreases with increasing initial pressure or gas instability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据