4.8 Article

Intrinsic Nonlinear Hall Effect and Gate-Switchable Berry Curvature Sliding in Twisted Bilayer Graphene

期刊

PHYSICAL REVIEW LETTERS
卷 131, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.131.066301

关键词

-

向作者/读者索取更多资源

The observation of the quantum anomalous Hall effect and nonlocal transport response in twisted bilayer graphene reveals the existence of nontrivial band topology governed by Berry curvature. However, recent works have shown that nonlinear Hall signals in graphene superlattices are caused by extrinsic disorder scattering instead of intrinsic Berry curvature dipole moment. In this study, we report an intrinsic nonlinear Hall effect induced by Berry curvature dipole in high-quality twisted bilayer graphene devices. We also demonstrate that the application of the displacement field can significantly change the direction and amplitude of the nonlinear Hall voltages through a field-induced sliding of the Berry curvature hotspots. Our findings not only establish the dominant role of Berry curvature dipole in generating intrinsic nonlinear Hall signals in graphene superlattices with low disorder densities, but also highlight the potential of twisted bilayer graphene as a sensitive and fine-tunable platform for second harmonic generation and rectification.
Though the observation of the quantum anomalous Hall effect and nonlocal transport response reveals nontrivial band topology governed by the Berry curvature in twisted bilayer graphene, some recent works reported nonlinear Hall signals in graphene superlattices that are caused by the extrinsic disorder scattering rather than the intrinsic Berry curvature dipole moment. In this Letter, we report a Berry curvature dipole induced intrinsic nonlinear Hall effect in high-quality twisted bilayer graphene devices. We also find that the application of the displacement field substantially changes the direction and amplitude of the nonlinear Hall voltages, as a result of a field-induced sliding of the Berry curvature hotspots. Our Letter not only proves that the Berry curvature dipole could play a dominant role in generating the intrinsic nonlinear Hall signal in graphene superlattices with low disorder densities, but also demonstrates twisted bilayer graphene to be a sensitive and fine-tunable platform for second harmonic generation and rectification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据