4.8 Article

Observation of a Topological Edge State Stabilized by Dissipation

期刊

PHYSICAL REVIEW LETTERS
卷 131, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.131.083801

关键词

-

向作者/读者索取更多资源

This paper studies the dissipation-induced emergence of a topological band structure in a non-Hermitian one-dimensional lattice system using arrays of plasmonic waveguides with tailored loss, and provides direct evidence for a topological edge state residing in the center of the band gap.
Robust states emerging at the boundary of a system constitute a hallmark for topological band structures. Other than in closed systems, topologically protected states can occur even in systems with a trivial band structure, if exposed to suitably modulated losses. Here, we study the dissipation-induced emergence of a topological band structure in a non-Hermitian one-dimensional lattice system, realized by arrays of plasmonic waveguides with tailored loss. We obtain direct evidence for a topological edge state that resides in the center of the band gap. By tuning dissipation and hopping, the formation and breakdown of an interface state between topologically distinct regions is demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据