4.6 Article

Equal-strength beam design of acoustic wave accelerometers

期刊

PHYSICA SCRIPTA
卷 98, 期 12, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1402-4896/ad0582

关键词

SAW; accelerometer; simulation; equal-strength beam; high-G

向作者/读者索取更多资源

In this paper, a simulation platform was developed to analyze and optimize designs of SAW accelerometers. Variable-thickness and equal-strength beams were designed to solve the issue of non-uniform strain distribution. Frequency responses of SAW accelerometers were successfully obtained using the simulation platform, and its accuracy was verified through experiments. Highly sensitive and equal-strength beam SAW accelerometer, as well as a high-G accelerometer, were achieved.
Surface acoustic wave (SAW) based accelerometers have received significant attention due to their digital output, low cost, mass production and easy implementation of wireless passive function. However, conventionally rectangular cantilever-beam based SAW accelerometers often have non-uniform strains generated along the beams, which cause emergence of parasitic wave modes and measurement errors. In this paper, a simulation platform was developed to analyze and optimize designs of SAW accelerometers and variable-thickness and equal-strength beams were designed to solve the critical issue of non-uniform strain distribution along the beam. Frequency responses of SAW accelerometers under the acceleration were successfully obtained using the simulation platform, with the visualized strain/stress distribution and particle displacement field. The accuracy of this simulation platform was verified using the experimental result reported in literature. A highly sensitive and equal-strength beam SAW accelerometer was achieved with a sensitivity up to 1.40 kHz g-1, a linearity coefficient of similar to 1, and a measurement range of 0 similar to 15 g. Furthermore, a high-G accelerometer was designed, with the capability of enduring large shocks up to 11,500 g and a sensitivity of 6.96 Hz g-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据