4.6 Article

Latitudinal storm track shift in a reduced two-level model of the atmosphere

期刊

PHYSICA D-NONLINEAR PHENOMENA
卷 458, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.physd.2023.133926

关键词

Mid-latitude dynamics; Geophysical fluid dynamics; Baroclinic instability; Barotropic instability; Minimal climate model

向作者/读者索取更多资源

In this study, a minimal dynamical system derived from the classical Phillips two-level model is introduced to investigate the interaction between eddies and mean flow. The study finds that the horizontal shape of the eddies can lead to three distinct dynamical regimes, and these regimes undergo transitions depending on the intensity of external baroclinic forcing. Additionally, the study provides insights into the continuous or discontinuous transitions of atmospheric properties between different regimes.
The eddy-driven jet stream and storm tracks in the mid-latitude atmosphere are known to shift in latitude on various timescales, but the physical processes that cause these shifts are still unclear. In this study, we introduce a minimal dynamical system derived from the classical Phillips two-level model with the goal of elucidating the essential mechanisms responsible for the interaction between eddies and mean flow. Specifically, we aim to understand the link between the structure of the eddies and the shift of the latitudinal maximum of the zonal flow. By varying the horizontal shape of the eddies, we find three distinct dynamical regimes whose occurrence depends on the intensity of the external baroclinic forcing: a purely zonal flow, a barotropic eddy regime with net poleward momentum flux, and a baroclinic eddy regime with both net poleward momentum and heat flux. For weak baroclinic forcing, the classical zonal flow solution with latitudinal maximum at the centre of the beta-channel is found. For strong forcing, if eddies are southwest-northeast tilted and zonally elongated, the system is in the baroclinic eddy regime, resulting in a poleward shift of the jet. The intermediate barotropic eddy regime also features a poleward shifted jet, yet with eddies structurally distinct from the baroclinic regime. Changing the parameters yields transitions between the regimes that can be either continuous or discontinuous in terms of the properties of the atmosphere. The findings of this study also provide insights into the properties of the storm track change between the jet entrance and jet exit regions of the North Atlantic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据