4.7 Article

Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging

期刊

PHARMACOLOGICAL RESEARCH
卷 195, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phrs.2023.106892

关键词

Adaptive thermogenesis; Adipose autophagy; Branched-chain amino acids; Brown adipose tissue; Dual agonists; Obesity; Secretome; Uncoupling protein 1

向作者/读者索取更多资源

Adaptive thermogenesis refers to the heat production by muscle contractions or brown adipose tissue in response to external stimuli. Brown adipose tissue and beige fat communicate with peripheral organs and the brain through secretory and absorption processes, and have potential therapeutic applications in obesity-related disorders.
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes controlling adipokines, microRNAs, extracellular vesicles, and metabolites and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据