4.7 Article

Continuous synthesis of hierarchical porous ZnO microspheres in supercritical methanol and their enhanced electrochemical performance in lithium ion batteries

期刊

CHEMICAL ENGINEERING JOURNAL
卷 266, 期 -, 页码 179-188

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2014.12.084

关键词

Zinc oxide; Supercritical methanol; Continuous synthesis; Nanostructure; Anode; Lithium secondary batteries

资金

  1. Ministry of Science, ICT & Future Planning [NRF-2013R1A1A2061020]
  2. National Research Foundation of Korea Grant - Ministry of Science, ICT & Future Planning [2009-0083540]

向作者/读者索取更多资源

Carbon-coated, hierarchical porous ZnO microspheres are synthesised continuously in supercritical methanol using oleic acid as the surface modifier and subsequent carbon coating, using sucrose as the carbon source. The physicochemical properties and the electrochemical performance of the ZnO microspheres are compared with those of commercially available ZnO and rod-type ZnO synthesised in supercritical water. The addition of oleic acid effectively inhibits the particle growth, resulting in nanosized primary ZnO particles with sizes of 10-50 nm that are loosely agglomerated and form secondary microspheres with sizes of 100-800 nm with a high porosity of 42.2%. After the carbon coating, the porous hierarchical ZnO microspheres with 6.8 wt% carbon exhibit a much higher reversible capacity of 546.5 mAh g(-1) compared to the rod-type ZnO (361.2 mAh g(-1)) and commercial ZnO (151.1 mAh g(-1)) at a current density of 97.8 mA g(-1) (0.1 C) after 30 cycles. In particular, at a high rate of 1.0 C, a reversible capacity of 428.5 mAh g(-1) can be obtained after 100 cycles. The enhanced discharge capacity of the carbon-coated ZnO may be attributed to the combined beneficial effects of nanosized primary particles, hierarchical porous morphology and carbon-coating on Li+ storage. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据