4.7 Article

Organic-inorganic based nano-conjugate adsorbent for selective palladium(II) detection, separation and recovery

期刊

CHEMICAL ENGINEERING JOURNAL
卷 259, 期 -, 页码 611-619

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2014.08.028

关键词

Nano-conjugate adsorbent (NCA); Palladium(II); Detection and separation; Sensitivity and selectivity; High sorption and reusability

资金

  1. Japan Society for the Promotion of Science [24860070]

向作者/读者索取更多资源

The functional group containing organic ligand of N,N(octane-1,8-diylidene)di(2-hydroxy-3,5-dimethylaniline) (DHDM) was developed and then successfully anchored onto mesoporous silica for the preparation of nano-conjugate adsorbent (NCA). After fabrication, the DHDM kept open functionality for capturing palladium (Pd(II)) under optimum conditions. The NCA exhibited the distinct color formation (pi-pi transition) after adding the Pd(II) ions both in solid and liquid states. The solution pH played an important role in the detection and sorption of Pd(II) but the prepared NCA worked well in the acidic pH region at 1.50. The data also clarified that the NCA did not form any color and signal intensity even in the presence of diverse ions except Pd(II). The determined limit of detection to Pd(II) ions was low as 0.14 mu g/L. In Pd(II) sorption, the affecting factors such as solution pH, kinetics, isotherm models, competing ions and elution/regeneration were studied in detail. The NCA confirmed the rapid sorption property and the maximum sorption capacity was 213.67 mg/g due to spherical nanosized cavities with large surface area and pore volume. The base metal of Cu(II) and Zn(II) did not hamper the Pd(II) sorption ability of NCA in the acidic pH region. Therefore, it was expected that the Pd(II) could be separated from other hard metal ions by the NCA. The data also clarified that the other competing metal ions did not decrease the Pd(II) sorption capacity and NCA had almost no sorption capacity, which suggested the high selectivity of Pd(II) ions by NCA. The adsorbed Pd(II) was eluted with 0.20 M HCl-0.20 M thiourea eluent and simultaneously regenerated into the original form. The NCA was reversible and kept remaining functionality for reuse in many cycles after an extraction/elution process without significant deterioration. Therefore the proposed NCA can be considered as a potential candidate for Pd(II) capturing from waste samples. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据