4.6 Article

Temporal characteristics of stationary switching waves in a normal dispersion pulsed-pump fiber cavity

期刊

OPTICS LETTERS
卷 48, 期 15, 页码 4097-4100

出版社

Optica Publishing Group
DOI: 10.1364/OL.492998

关键词

-

类别

向作者/读者索取更多资源

In this study, Kerr cavities driven in the normal dispersion regime were investigated, and switching waves were found. The fine structure of individual switching waves, including resonant oscillations, was directly observed with nanosecond pulses. The intimate connection between the temporal and spectral features of the dispersive waves associated with switching waves was demonstrated, and the evolution of these dispersive waves with cavity parameters was investigated. Additionally, the generation and observation of stable and persistent dark pulses under quasi-CW pumping conditions were achieved, validating the accuracy of the dispersive wave formalism used.
Kerr cavities driven in the normal dispersion regime are known to host switching waves. These consist of a traveling wavefront that connects separate regions associated with high- and low-intensity steady states of the cavity. In this Letter, we drive a 230-m custom built fiber ring cavity with strong normal dispersion using nanosecond pulses, allowing us to directly resolve the fine structure of individual switching waves, including resonant oscillations occurring over periods of the order of similar to 10 ps. We demonstrate the intimate connection between the temporal and spectral features of the dispersive waves associated with switching waves, while also investigating how these dispersive waves evolve with cavity parameters, namely the frequency detuning and pump desynchronization. Furthermore, by applying a localized and temporary perturbation to our driving field in the presence of a phase modulation trapping potential, we are able to generate a stable and persistent dark pulse, allowing us to directly observe and model the interlocking of two stationary switching waves under quasi-CW pumping conditions. These results further verify the accuracy of the dispersive wave formalism used, and show that their temporal modulation frequency and decay rate in a pulsed-pumped cavity are accurately captured from theory previously applied to CW-pumped systems. (c) 2023 Optica Publishing Group

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据