4.6 Article

High-efficiency broadband achromatic metalenses for visible full-stokes polarization imaging

期刊

OPTICS EXPRESS
卷 31, 期 17, 页码 28611-28623

出版社

Optica Publishing Group
DOI: 10.1364/OE.496492

关键词

-

类别

向作者/读者索取更多资源

Polarization-imaging technology based on metalenses has important applications in various fields. However, currently designed metalens arrays for full-Stokes polarization imaging can only be used for monochromatic detection, limiting the amount of measured information. To achieve broad-spectrum polarization imaging, we propose and design a metalens array that can achieve full-Stokes polarization imaging in the broadband visible range. Evaluation: 8/10
Polarization-imaging technology has important applications in target detection, communication, biomedicine, and other fields. A polarization imaging system based on metalenses, which provides new possibilities for the realization of highly integrated full-Stokes polarization imaging systems, can solve the problems of traditional polarization imaging systems, such as complex structures, large volumes, and the inability to simultaneously obtain linear and circular polarization states. However, currently designed metalens arrays that can achieve real-time full-Stokes polarization imaging can generally only be used for monochromatic detection, which significantly limits the amount of measured information of the object. Broad-spectrum polarization color imaging allows more image degrees of freedom, enabling more accurate characterization of polarization for multi-target object scenes in complex environments. To achieve broad-spectrum polarization imaging, we propose and design a metalens array that can achieve full-Stokes polarization imaging in the broadband visible range, in which the design process of metalenses for splitting and focusing broadband orthogonal circularly polarized light is emphasized. To design metalenses that can achieve polarization splitting and efficient focusing, we simulate and optimize the height and period of the nano-units and show that smaller periods and larger heights do not always result in higher-performance devices when designing multifunctional metalenses. The designed metalens array can split and diffraction-limited focus the orthogonal polarized incident light to the designated position with average focusing efficiencies of 59.2% under 460-680 nm TM linearly polarized light, 53.1% under TE linearly polarized light, 58.8% under left-handed circularly polarized light, and 52.7% under right-handed circularly polarized light. The designed metalenses can be applied to imaging systems, such as polarization imaging and polarization light-field imaging systems.& COPY; 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据