4.6 Article

Rapid post-annealing effect on the TiO2-based electrochromic films

期刊

OPTICAL MATERIALS
卷 145, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.optmat.2023.114455

关键词

Electrochromic; Sol -gel spin-coating; Titanium dioxide; Annealing temperature

向作者/读者索取更多资源

This study presents a cost-effective and time-saving method for producing high-quality TiO2 electrochromic thin films using a sol-gel spin coating technique and rapid post-annealing. The successful deployment of TiO2 in electrochromic applications provides opportunities for integrating EC and photovoltaic technologies in energy-saving window glass applications.
The electrochromic (EC) window is a promising energy-saving smart window that can vary between three states: transparent, translucent, and opaque by applying low voltages. One of the potential EC materials is known as titanium dioxide (TiO2) due to its unique chemical and physical properties. Conventional post-annealing has been commonly employed for phase transition in EC thin films, but it suffers from drawbacks such as long treatment time and high energy consumption. Hence, in this study, TiO2 thin films were deposited on indium-doped tin oxide (ITO) and fluoride-doped tin oxide (FTO) glass substrates using a sol-gel spin coating technique, followed by a rapid post-annealing interval of 5 min at temperatures ranging from 300 to 450 degrees C. The optical, morphological, structural, and EC properties of TiO2 thin films were investigated. The measurement depicted that rapid post-annealing was a cost-effective and time-saving method for realising high-quality TiO2 EC thin films. Hence, this approach reduces the overall fabrication time and minimises energy consumption, rendering it an environmentally friendly process. The successful deployment of TiO2 in EC applications paves the way for integrating EC and photovoltaic technologies in energy-saving window glass applications, considering TiO2 is a crucial element in photovoltaic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据