4.8 Article

Real-time imaging of drug-induced trapping of cellular topoisomerases and poly(ADP-ribose) polymerase 1 at the single-molecule level

期刊

NUCLEIC ACIDS RESEARCH
卷 -, 期 -, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkad735

关键词

-

向作者/读者索取更多资源

Topoisomerases and PARP are crucial nuclear enzymes for DNA metabolisms, and also targets of anti-tumor chemotherapeutics. We developed an imaging-based approach to monitor real-time trapping of TOPccs and PARP1 in live cells at the single-molecule level. This technique can help elucidate the molecular processes and facilitate the development of new therapies.
Topoisomerases (TOP1, TOP2 & alpha;, and & beta;) are nuclear enzymes crucial for virtually all aspects of DNA metabolisms. They also are the targets of important anti-tumor chemotherapeutics that act by trapping the otherwise reversible topoisomerase-DNA covalent complex intermediates (TOPccs) that are formed during their catalytic reactions, resulting in long-lived topoisomerase DNA-protein crosslinks (TOP-DPCs) that interfere with DNA transactions. The Poly(ADP-ribose) polymerase (PARP) family protein PARP1 is activated by DNA damage to recruit DNA repair proteins, and PARP inhibitors are another class of commonly used chemotherapeutics, which bind and trap PARP molecules on DNA. To date, the trapping of TOPccs and PARP by their respective inhibitors can only be measured by immune-biochemical methods in cells. Here, we developed an imaging-based approach enabling real-time monitoring of drug-induced trapping of TOPccs and PARP1 in live cells at the single-molecule level. Capitalizing on this approach, we calculated the fraction of self-fluorescence tag-labeled topoisomerases and PARP single-molecules that are trapped by their respective inhibitors in real time. This novel technique should help elucidate the molecular processes that repair TOPcc and PARP trapping and facilitate the development of novel topoisomerase and PARP inhibitor-based therapies. Graphical Abstract

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据