4.4 Article

Design and performance of the Fermilab Constant Fraction Discriminator ASIC

出版社

ELSEVIER
DOI: 10.1016/j.nima.2023.168655

关键词

Solid state detectors; Timing detectors; Particle tracking detectors (solid-state detectors); Electron ion collider

向作者/读者索取更多资源

This study presents the design and performance characterization results of the novel Fermilab Constant Fraction Discriminator ASIC (FCFD) for reading out low gain avalanche detector (LGAD) signals. The FCFD has a specially designed discriminator that is robust against amplitude variations of the LGAD signal, providing more stable time resolution.
We present the design and performance characterization results of the novel Fermilab Constant Fraction Discriminator ASIC (FCFD) developed to readout low gain avalanche detector (LGAD) signals by directly using a constant fraction discriminator (CFD) to measure signal arrival time. Silicon detectors with time resolutions less than 30 ps will play a critical role in future collider experiments, and LGADs have been demonstrated to provide the required time resolution and radiation tolerance for many such applications. The FCFD has a specially designed discriminator that is robust against amplitude variations of the signal from the LGAD that normally requires an additional correction step when using a traditional leading edge discriminator. The application of the CFD directly in the ASIC promises to be more reliable and reduces the complication of evolving time-walk corrections throughout the operational lifetime of the detector system. We will present a summary of the measured performance of the FCFD for input signals generated by internal charge injection, LGAD signals from an infrared laser, and LGAD signals from minimum-ionizing particles. The mean time response for LGAD signals with charge ranging between 5 and 26 fC has been measured to vary no more than 10 ps, orders of magnitude more stable than an uncorrected leading edge discriminator based measurement, and effectively removes the need for any additional time-walk correction. The measured contribution to the time resolution from the FCFD ASIC is found to be 10 ps for signals with charge above 20 fC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据